Glomerular podocytes: a study of mechanical properties and mechano-chemical signaling.

نویسندگان

  • Alexander Eekhoff
  • Navid Bonakdar
  • José Luis Alonso
  • Bernd Hoffmann
  • Wolfgang H Goldmann
چکیده

Kidney glomeruli function as filters, allowing the passage of small solutes and waste products into the urinary tract, while retaining essential proteins and macromolecules in the blood stream. These structures are under constant mechanical stress due to fluid pressure, driving filtration across the barrier. We mechanically stimulated adherent wildtype podocytes using the methods of magnetic tweezer and twisting as well as cell stretching. Attaching collagen IV-coated or poly-l-lysine-coated magnetic beads to cell receptors allowed for the determination of cellular stiffness. Angiotensin II-treated podocytes showed slightly higher stiffness than untreated cells, the cell fluidity (i.e. internal dynamics) remained similar, and showed an increase with force. The bead detachment (a measure of the binding strength) was higher in angiotensin II-treated compared to untreated podocytes. Magnetic twisting confirmed that angiotensin II treatment of podocytes increases and CDTA treatment decreases cell stiffness. However, treatment with both angiotensin II and CDTA increased the cell stiffness only slightly compared to solely CDTA-treated cells. Exposing podocytes to cyclic, uniaxial stretch showed an earlier onset of ERK(1/2) phosphorylation compared to MEF (control) cells. These results indicate that angiotensin II might free intracellularly stored calcium and affects actomyosin contraction, and that mechanical stimulation influences cell signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical stress enhances CD9 expression in cultured podocytes.

Elevated glomerular pressure represents a high risk for the development of severe kidney diseases and causes an increase in mechanical load to podocytes. In this study, we investigated whether mechanical stress alters gene expression in cultured podocytes using gene arrays. We found that tetraspanin CD9 is significantly upregulated in cultured podocytes after mechanical stress. The differential...

متن کامل

Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress.

Glomerular hypertension is a major determinant advancing progression to end-stage renal failure. Podocytes, which are thought to counteract pressure-mediated capillary expansion, are increasingly challenged in glomerular hypertension. Studies in animal models of glomerular hypertension indicate that glomerulosclerosis develops from adhesions of the glomerular tuft to Bowman's capsule due to pro...

متن کامل

Functional Expression of the Renin Angiotensin System in Human Podocytes Running title: Angiotensin system in podocytes

Experimental and clinical studies impressively demonstrate that angiotensin converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) significantly reduce proteinuria and retard progression of glomerular disease. The underlying intraglomerular mechanisms are not yet fully elucidated. As podocyte injury constitutes a critical step in the pathogenesis of glomerular proteinuria, ...

متن کامل

Ectopic notch activation in developing podocytes causes glomerulosclerosis.

Genetic evidence supports an early role for Notch signaling in the fate of podocytes during glomerular development. Decreased expression of Notch transcriptional targets in developing podocytes after the determination of cell fate suggests that constitutive Notch signaling may oppose podocyte differentiation. This study determined the effects of constitutive Notch signaling on podocyte differen...

متن کامل

From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy.

Nephropathy is a major complication of diabetes. Alterations of mesangial cells have traditionally been the focus of research in deciphering molecular mechanisms of diabetic nephropathy. Injury of podocytes, if recognized at all, has been considered a late consequence caused by increasing proteinuria rather than an event inciting diabetic nephropathy. However, recent biopsy studies in humans ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 406 2  شماره 

صفحات  -

تاریخ انتشار 2011